If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2-10x+1=0
a = 11; b = -10; c = +1;
Δ = b2-4ac
Δ = -102-4·11·1
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{14}}{2*11}=\frac{10-2\sqrt{14}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{14}}{2*11}=\frac{10+2\sqrt{14}}{22} $
| 7+18c+12c=7+8c | | x^2+62=-8 | | 9x-7=13+4x | | -15y+19=-16y | | 4x+10=6x+20=90 | | (5x-65)+(x+35)+(1/5x+55)=360 | | -3t+5-3t=-9-4t | | 6/7(x+1)=1/14(x+3) | | 20x+60=20x+75 | | (y+8)^2/5=2 | | (6x-1)^2=53 | | 72=9(2-3x)-2(3-6x) | | 11y^2-10y+1=0 | | -3t+5–3t=-9–4t | | -16+6r=r-8+r | | 3y^-2y-5=0 | | -19=5x+2(-x-2) | | x/7+6=3+2X | | 5-6s=-4-9s | | c^2+8c=-2 | | 7v-10=39 | | 4a+3=5a+4 | | 2(6x-12)=3(8x-4) | | 16+x=2(7-5x)+x | | 5–6s=-4–9s | | (X+1)^2+y^2=100 | | -5d-10d-10=-10d+10 | | 3.5=n+14 | | -13=1+5m+1 | | 4x+10+6x+20=90 | | -5d–10d–10=-10d+10 | | -3.37-4.9m=-6.3m-17.93 |